Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
While extensive research has focused on evapotranspiration (ET) from land surface, the spatial distributions of ET of the woodland and forest understorey remain poorly understood. This study developed a method for estimating spatially distributed understorey ET by integrating the Maximum Entropy Production model with airborne thermal imagery. Validation against ground-truth estimation showed good model performance (R2 = 0.93, RMSE = 0.03 mm/h), confirming its efficacy across different land cover types, including open and understory areas. The results revealed significant spatial heterogeneity in understory ET with varying vegetation cover and topographic attributes, and distinct responses to wetting events. This method provides a new tool for estimating the important understory water consumption in forests and woodlands, contributing to assessing ecosystem water use efficiency and improving water resource and vegetation management strategies.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
GaAs(111)B are commercially available substrates widely used for the growth of van der Waals chalcogenide films. Wafer-scale, high-quality crystalline films can be deposited on GaAs(111)B substrates using molecular beam epitaxy. However, two obstacles persist in the use of GaAs(111)B: first, the surface dangling bonds make it challenging for the growth of van der Waals materials; second, the As-terminated surface is prone to aging in air. This study investigated a thermal treatment method for deoxidizing GaAs(111)B substrates while simultaneously passivating the surface dangling bonds with Se. By optimizing the treatment parameters, we obtained a flat and completely deoxidized platform for subsequent film growth, with highly reproducible operations. Furthermore, through first-principle calculations, we find that the most energetically favorable surface of GaAs(111)B after Se passivation consists of 25% As atoms and 75% Se atoms. Finally, we discovered that the common storage method using food-grade vacuum packaging cannot completely prevent substrate aging, and even after thermal treatment, aging still affects subsequent growth. Therefore, we recommend using N2-purged containers for better preservation.more » « less
-
We conducted mental model interviews in Aotearoa NZ to understand perspectives of uncertainty associated with natural hazards science. Such science contains many layers of interacting uncertainties, and varied understandings about what these are and where they come from creates communication challenges, impacting the trust in, and use of, science. To improve effective communication, it is thus crucial to understand the many diverse perspectives of scientific uncertainty.Participants included hazard scientists (e.g., geophysical, social, and other sciences), professionals with some scientific training (e.g., planners, policy analysts, emergency managers), and lay public participants with no advanced training in science (e.g., journalism, history, administration, art, or other domains). We present a comparative analysis of the mental model maps produced by participants, considering individuals’ levels of training and expertise in, and experience of, science.A qualitative comparison identified increasing map organization with science literacy, suggesting greater science training in, experience with, or expertise in, science results in a more organized and structured mental model of uncertainty. There were also language differences, with lay public participants focused more on perceptions of control and safety, while scientists focused on formal models of risk and likelihood.These findings are presented to enhance hazard, risk, and science communication. It is important to also identify ways to understand the tacit knowledge individuals already hold which may influence their interpretation of a message. The interview methodology we present here could also be adapted to understand different perspectives in participatory and co-development research.more » « less
-
Landscapes are formed by long-term interactions between the underlying geology and climatic, edaphic and biotic factors, including human activity. The Kasitu Valley in the Mzimba District of northern Malawi includes the Kasitu River and its adjacent floodplains and uplands, and it has been a location of sustained human occupation since at least 16 thousand years ago (ka) based on archaeological excavations from rockshelters. We trace the changing ecology and geomorphology of the region through soil stable isotopes (δ13C, δ15N), microcharcoal and fossil pollen analysed from alluvial terraces dated by Optically Stimulated Luminescence, and wetland auger cores and archaeological sites dated by radiocarbon. Our results suggest that the region was primarily covered in mosaic forest at ca. 22.5 ka. Middle and Late Holocene samples (6.0–0.5 ka) show an increasingly open, herbaceous landscape over time with an inflection toward more abundant C4 vegetation after 2 ka. Significant upland erosion and terrace formation is also evidenced since 2 ka alongside high concentrations of microcharcoal, suggesting more intensive use of fire. Faecal biomarkers simultaneously indicate higher numbers of humans living adjacent to the archaeological site of Hora 1, which may be indicative of an overall population increase associated with the arrival of Iron Age agropastoralists. More recently, the introduction of exogenous commercial taxa such asPinussp. are correlated with regional afforestation in our proxy record. These results show increasing stepwise human impacts on the local environment, with deforestation and maintenance of open landscapes correlated with the regional introduction and intensification of agriculture during the Late Holocene.more » « less
-
The science associated with assessing natural hazard phenomena and the risks they pose contains many layers of complex and interacting elements, resulting in diverse sources of uncertainty. This creates a challenge for effective communication, which must consider how people perceive that uncertainty. Thus, we conducted twenty-five mental model interviews in Aotearoa New Zealand with participants ranging from scientists to policy writers and emergency managers, and through to the public. The interviews included three phases: an initial elicitation of free thoughts about uncertainty, a mental model mapping activity, and a semi-structured interview protocol to ex- plore further questions about scientific processes and their personal philosophy of science. Quali- tative analysis led to the construction of key themes, including: (a) understanding that, in addi- tion to data sources, the ‘actors’ involved can also be sources of uncertainty; (b) acknowledging that factors such as governance and funding decisions partly determine uncertainty; (c) the influ- ence of assumptions about expected human behaviours contributing to “known unknowns'; and (d) the difficulty of defining what uncertainty actually is. Participants additionally highlighted the positive role of uncertainty for promoting debate and as a catalyst for further inquiry. They also demonstrated a level of comfort with uncertainty and advocated for ‘sitting with uncertain- ty’ for transparent reporting in advice. Additional influences included: an individual's under- standing of societal factors; the role of emotions; using outcomes as a scaffold for interpretation; and the complex and noisy communications landscape. Each of these require further investiga- tion to enhance the communication of scientific uncertainty.more » « less
-
null (Ed.)Modern Homo sapiens engage in substantial ecosystem modification, but it is difficult to detect the origins or early consequences of these behaviors. Archaeological, geochronological, geomorphological, and paleoenvironmental data from northern Malawi document a changing relationship between forager presence, ecosystem organization, and alluvial fan formation in the Late Pleistocene. Dense concentrations of Middle Stone Age artifacts and alluvial fan systems formed after ca. 92 thousand years ago, within a paleoecological context with no analog in the preceding half-million-year record. Archaeological data and principal coordinates analysis indicate that early anthropogenic fire relaxed seasonal constraints on ignitions, influencing vegetation composition and erosion. This operated in tandem with climate-driven changes in precipitation to culminate in an ecological transition to an early, pre-agricultural anthropogenic landscape.more » « less
An official website of the United States government
